INTERCONNECT STRUCTURE FOR ROOM TEMPERATURE 3D-IC STACKING EMPLOYING BINARY ALLOYING FOR HIGH TEMPERATURE STABILITY

Eric Schulte1, Matthew Lueck2, Alan Huffman2, Chris Gregory2, Keith Cooper1, Dorota Temple2

1SET North America, Chester, NH, USA
2RTI International CMET, Research Triangle Park, NC, USA

eschulte@set-na.com

11/6/2013
Outline

• Intro: Current Methods of 3D Assembly
• Proposed Solution: Room Temp Bonding
• Methodology and Characterization
• Evaluation of Experimental Results
• Conclusions and Next Steps
3D Promise / 3D Issues

Promise:
- High speed
- Low power
- High density

Issues:
- Bonding Registration Issues
- Serial Yield Issues
- Operability/Reliability Issues
Assessment of Conventional Reflow and Thermocompression Bonding for 3D-IC
Conventional Reflow and Thermocompression Bonding

<table>
<thead>
<tr>
<th>REFLOW (e.g. SnAg/Cu)</th>
<th>THERMOCOMPRESSION (e.g. Cu/Cu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>Slow</td>
</tr>
<tr>
<td>Solder Bridges</td>
<td>Confined, Stable</td>
</tr>
<tr>
<td>Low force</td>
<td>High Force</td>
</tr>
<tr>
<td>Lateral instability</td>
<td>Laterally Stable</td>
</tr>
<tr>
<td>Solder Compliance</td>
<td>Ultra Flatness Required</td>
</tr>
<tr>
<td>Unstable during stacking</td>
<td>Thermally Stable</td>
</tr>
<tr>
<td>CTE Mismatch</td>
<td>CTE Mismatch</td>
</tr>
<tr>
<td>Controlled Atmosphere</td>
<td>Controlled Atmosphere</td>
</tr>
</tbody>
</table>
Ideal 3D Metallurgy and Bond Process Would Have the Following Characteristics

• High speed bond cycle.
 – Room temperature bond at low force.
 – Air ambient.
• Fine pitch capability (<10µ) without bridging.
• Compliant metallurgy to give flatness margin.
• Unlimited wafer level chip stacking.
 – Mechanical stability during (1+n) bonds.
 – No concerns for oxidation buildup.
• Immune to “next-higher-assembly” reflow.
Proposal: A Novel Metallurgy and Bond Process for Room Temperature 3D Multi-Chip Stacking
Proposed Solution: InAg Binary
Advantages of InAg Binary

• Deoxidized Ag and In bond instantly at RT.
• Compliant Indium allows flatness tolerance.
• Indium has easily controlled squeeze-out.
• Low bonding force: < 0.1 gram per bump at atmospheric ambient.
• Mechanical stability during subsequent bonds.
• InAg alloy anneal is performed at 120-140°C (solid state), then stable to >600°C.
InAg Binary Bonding - Engineering Details
Detail: Surface Prep

• **De-oxidized** Indium and Silver will cold-weld instantly at room temp.

• Could wet etch oxide, but throughput is slow and oxide re-grows, making the process time-dependent.

• Atmospheric plasma quickly removes oxide and passivates die for bonding.

• Passivation enables long queue lifetime (hours).
Detail: In-Situ Probing

- Room temp bonding and no confinement enable in-situ probing during bonding.
Detail: In-Situ Probing

- Room temp bonding and no confinement enable in-situ probing during bonding.
- Operability of each bond can be checked during the stacking operation.
Detail: In/Ag Alloy Anneal

- Indium and Silver interdiffuse rapidly, even below the melting point of Indium. (~135°C)
- Since the bonded connections remain in the solid phase, no compression force is needed during anneal. Die flatness/bowing issues are avoided.
- Ideal volume ratio of Ag to In is 2:1 to form Ag₂In with a melting point of ~600°C.
- Diffusion kinetics depend on metal purity, time, volume, and temperature.
- Cross-section + EDS provide interdiffusion data.
Experimental
Test Chips

Substrate (Ag bump):

- Silicon substrate.
- 256 Copper daisy chain continuity channels.
- 1280 bumps each.
- Bumps are 4µ dia, 4µ tall
- 10µ centers.
- Copper pillars (plated).
- Nickel barrier (plated).
- Ag cap (plated).
- No CMP.

Chip (In bump):

- Silicon chip.
- 256 Copper daisy chain continuity channels.
- 1280 bumps each.
- Bumps are 4µ dia, 4µ tall
- 10 µ centers.
- Copper pillars (plated).
- Nickel barrier (plated).
- In cap (plated).
- No CMP.
Wet Etch Surface Preparation

• Pre-bond wet etch option:
 – Dilute HCL to remove oxidation from Ag and In.
 – Extreme care required to avoid over-etching.
 – Bond parts within 10 minutes to avoid re-oxidation.
Atmospheric Plasma Surface Prep

• Reducing chemistry converts bump oxide back to native metal.

• Passivating chemistry ties up metal dangling bonds.

• Process takes less than 1 minute. Atomic passivation inhibits re-oxidation for hours, is bond-able.

• Activates chip surfaces for enhanced underfill wicking.
Room Temperature Bonding

- 27° C substrate and chip.
- Compression bond at <0.1 gram per bump (32Kg total force on 640x512 bumps).
- Maintain 1 µ alignment accuracy thru bonding.
- Confining gas not required.
- Multiple-chip automatic placement available but not used for these experiments.
Post-Bond Alloy Anneal

- Alloy anneals performed in room air.
- Programmed ramp, temperature, and time.
- RT-140C alloy anneal temperature.
- 0-32 Kg compression force applied during anneal.
- 0-30 minutes alloy anneal time.
- Can be performed simultaneously with underfill cure.
Experimental Results
Atmospheric Plasma Cleanup, RT Bond, 200C 10 min Alloy Anneal (no force)

- Strong adhesion of In/Ag as evidenced by tensile rupture.
- Ag2In alloy is **ductile**, not fragile
- Capable of removing alloyed In/Ag bump from its Ni pad.
RT Bond, A.P., 200C 30 min Anneal
Cross-section and EDS

- No pure Indium remaining.
- Region B is ideal Ag$_2$In alloy ratio.
- Region C, D & E some Cu, so less Indium available for Ag alloying.
- Cu is probably a remnant of seed layer removal by sputtering. Wet etch next time!
- Nickel barrier (F) shows no diffusion of In, Ag, or Cu.
- Region A is still 96% Ag, indicating a depletion of In for alloying.
- Take-aways:
 - Indium prefers Cu to Ag for alloying.
 - Cu ties up Indium efficiently – must eliminate from bonding region.
 - Cu/In intermetallic is reported as fragile – may explain signs of voiding/cracking at original bond interface.
RT Bond, A.P., 200C 30 min Anneal
Cross-section and EDS

- No pure Indium remaining.
- **Region B** is ideal Ag$_2$In alloy ratio.
- Region C, D & E some Cu, so less Indium available for Ag alloying.
- Cu is probably a remnant of seed layer removal by sputtering. Wet etch next time!
- Nickel barrier (F) shows no diffusion of In, Ag, or Cu.
- Region A is still 96% Ag, indicating a depletion of In for alloying.
- Take-aways:
 - Indium prefers Cu to Ag for alloying.
 - Cu ties up Indium efficiently – must eliminate from bonding region.
 - Cu/In intermetallic is reported as fragile – may explain signs of voiding/cracking at original bond interface.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>95.7%</td>
<td>67.6%</td>
<td>58.8%</td>
<td>25.1%</td>
<td>33.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>In</td>
<td>4.3%</td>
<td>32.4%</td>
<td>37.9%</td>
<td>65.1%</td>
<td>59.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Ni</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100.0%</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0%</td>
<td>0.0%</td>
<td>3.3%</td>
<td>9.8%</td>
<td>7.2%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

11/6/2013
RT Bond, A.P., 200C 30 min Anneal Cross-section and EDS

- No pure Indium remaining.
- Region B is ideal Ag$_2$In alloy ratio.
- Region C, D & E some Cu, so less Indium available for Ag alloying.
- Cu is probably a remnant of seed layer removal by sputtering. Wet etch next time!
- Nickel barrier (F) shows no diffusion of In, Ag, or Cu.
- Region A is still 96% Ag, indicating a depletion of In for alloying.
- Take-aways:
 - Indium prefers Cu to Ag for alloying.
 - Cu ties up Indium efficiently – must eliminate from bonding region.
 - Cu/In intermetallic is reported as fragile – may explain signs of voiding/cracking at original bond interface.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>95.7%</td>
<td>67.6%</td>
<td>58.8%</td>
<td>25.1%</td>
<td>33.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>In</td>
<td>4.3%</td>
<td>32.4%</td>
<td>37.9%</td>
<td>65.1%</td>
<td>59.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Ni</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100.0%</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0%</td>
<td>0.0%</td>
<td>3.3%</td>
<td>9.8%</td>
<td>7.2%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
RT Bond, A.P., 200C 30 min Anneal
Cross-section and EDS

- No pure Indium remaining.
- Region B is ideal Ag$_2$In alloy ratio.
- Region C, D & E some Cu, so less Indium available for Ag alloying.
- Cu is probably a remnant of seed layer removal by sputtering. Wet etch next time!
- **Nickel barrier (F) shows no diffusion of In, Ag, or Cu.**
- Region A is still 96% Ag, indicating a depletion of In for alloying.
- **Take-aways:**
 - Indium prefers Cu to Ag for alloying.
 - Cu ties up Indium efficiently – must eliminate from bonding region.
 - Cu/In intermetallic is reported as fragile – may explain signs of voiding/cracking at original bond interface.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>95.7%</td>
<td>67.6%</td>
<td>58.8%</td>
<td>25.1%</td>
<td>33.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>In</td>
<td>4.3%</td>
<td>32.4%</td>
<td>37.9%</td>
<td>65.1%</td>
<td>59.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Ni</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100.0%</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0%</td>
<td>0.0%</td>
<td>3.3%</td>
<td>9.8%</td>
<td>7.2%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
RT Bond, A.P., 200C 30 min Anneal
Cross-section and EDS

- No pure Indium remaining.
- Region B is ideal Ag₂In alloy ratio.
- Region C, D & E some Cu, so less Indium available for Ag alloying.
- Cu is probably a remnant of seed layer removal by sputtering. Wet etch next time!
- Nickel barrier (F) shows no diffusion of In, Ag, or Cu.
- Region A is still 96% Ag, indicating a depletion of In for alloying.
- Take-aways:
 - Indium prefers Cu to Ag for alloying.
 - Cu ties up Indium efficiently – must eliminate from bonding region.
 - Cu/In intermetallic is reported as fragile – may explain signs of voiding/cracking at original bond interface.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>95.7%</td>
<td>67.6%</td>
<td>58.8%</td>
<td>25.1%</td>
<td>33.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>In</td>
<td>4.3%</td>
<td>32.4%</td>
<td>37.9%</td>
<td>65.1%</td>
<td>59.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Ni</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100.0%</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0%</td>
<td>0.0%</td>
<td>3.3%</td>
<td>9.8%</td>
<td>7.2%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
No pure Indium remaining.

Region B is ideal Ag$_2$In alloy ratio.

Region C, D & E some Cu, so less Indium available for Ag alloying.

Cu is probably a remnant of seed layer removal by sputtering. Wet etch next time!

Nickel barrier (F) shows no diffusion of In, Ag, or Cu.

Region A is still 96% Ag, indicating a depletion of In for alloying.

Take-aways:

- Indium prefers Cu to Ag for alloying.
- Cu ties up Indium efficiently – must eliminate from bonding region.
- Cu/In intermetallic is reported as fragile – may explain signs of voiding/cracking at original bond interface.
Makeshift Structure To Avoid Cu Contamination - Replace Ag-Bumped Sub With Ag Planar Coupon

- **Bond In-Bumped Chip To Ag coupon**
- **Planar Silver coupon**

- **Sputtered Cu “Jacket”**
- **Cu contam.**

11/6/2013
Indium Chip To Silver Coupon; AP Prep
RT Bond; Anneal (no force) 30 min/135

High force shear

InAg alloy separated in bulk
Electrical Continuity Testing

- 256 daisy chain strings per chip.
- 1260 bumps in each string.
- Samples potentially compromised by Cu contamination.

<table>
<thead>
<tr>
<th>Anneal Temp</th>
<th>Ramp up time</th>
<th>Hold Time</th>
<th>Avg. Ω/bump</th>
<th>Yield to opens</th>
<th>Yield to shorts</th>
</tr>
</thead>
<tbody>
<tr>
<td>135°C</td>
<td>20 sec</td>
<td>600 Sec</td>
<td>0.248</td>
<td>98%</td>
<td>98%</td>
</tr>
<tr>
<td>190°C</td>
<td>60 sec</td>
<td>90 sec</td>
<td>0.108</td>
<td>93%</td>
<td>96%</td>
</tr>
<tr>
<td>190°C</td>
<td>240 sec</td>
<td>90 sec</td>
<td>0.084</td>
<td>100%</td>
<td>98%</td>
</tr>
</tbody>
</table>

- Increased anneal time/temp appears to improve bump conductance.
- Anneal above Indium melt temp does not seem to affect opens or shorts.
- Limited data suggests capability for low resistance, high yield contact.

11/6/2013
Shear Testing

- Bonded pairs were shear-tested in accordance with MIL-STD-883 which specifies die shear strength for this size die as 5.0 kg.
- Although shear data is limited, shear strengths on all samples measured did easily exceed the MIL-STD requirement.
- Shear strength is expected to improve when Cu is kept out of bond zone.
- The current data suggest that this bond scheme is capable of robust mechanical performance.

<table>
<thead>
<tr>
<th>Anneal Temp</th>
<th>Ramp up time</th>
<th>Hold Time</th>
<th>Shear Strength (Kg)</th>
<th>Shear/MIL-STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>135C</td>
<td>20 sec</td>
<td>600 Sec</td>
<td>12.1</td>
<td>242%</td>
</tr>
<tr>
<td>190C</td>
<td>60 sec</td>
<td>90 sec</td>
<td>8.6</td>
<td>172%</td>
</tr>
</tbody>
</table>

11/6/2013
Surface Activation for Capillary Underfill

Die surfaces are not naturally wetting.
Contact angle ~50-70

De-oxidizing Atmospheric Plasma also activates die surfaces for enhanced CUF.
Contact angle <10
Conclusions

• AgIn system is capable of high speed, low force, room temperature bonding.
• 3DIC stacking at room temperature has significant benefits.
• Metallurgy is capable of MIL-STD mechanical stability following solid-state alloy anneal.
• Copper participates aggressively in Indium metallurgy – keep isolated.
• Nickel appears to be a suitable barrier layer to isolate Cu from Ag and In.
• Atmospheric Plasma enables fluxless instant RT bonding of In-to-Ag bumps and enhanced wicking of capillary underfills.
• These preliminary results for InAg binary bonding are very encouraging, and warrant further investigation.
Future Plans

- Fabricate new test chips confining the Cu to the interconnect layer.
- Characterize the interdiffusion mechanisms of the Ag/In binary system for small bump volumes.
- Characterize series resistance, shear, and high-temperature stability of the Ag/In binary system.
- Demonstrate multi-chip 3D stacking and subsequent underfill and reflow with the Ag/In binary system.
- Cultivate industrial partnerships to develop and implement this technology.
Acknowledgements

• The authors would like to thank Professor C.C. Lee and his students at U.C. Irvine. Their pioneering work in Ag/In metallurgy and processes provided inspiration for this development project.

• Fabrication, testing, and analytical work was performed and supported by RTI International CMET, internal funding.

• Surface preparation, bonding, and assembly process development was performed and supported by SETNA Corp.